
BF3 PC Server Remote Administration Protocol

This is the remote-administration protocol used by BF3 PC Server R34.

It is work-in-progress; features are first added to the game, and then controlling commands are added to the

Remote Administration interface.

Contents
About.. 2

Low-level protocol .. 2

Packet format ... 2

int32 ... 2

Word ... 2

Packet ... 2

Protocol behaviour.. 3

Comments .. 3

Parameter formats .. 4

String .. 4

Boolean .. 4

HexString .. 4

Password .. 4

Filename ... 4

Clantag.. 4

Player name .. 4

GUID ... 4

Team ID .. 4

Squad ID ... 4

Player subset... 4

Timeout .. 5

Id-type .. 5

Player info block.. 5

Team scores .. 5

IpPortPair .. 5

MapList ... 6

Unlock mode ... 6

Server events .. 6

Summary .. 6

Player events .. 6

Misc .. 7

Level/Round .. 8

Client commands .. 9

Summary .. 9

Misc .. 11

PunkBuster ... 12

Query .. 12

Communication... 13

Manage players... 13

Reserved Slots ... 14

Banning ... 15

MapList ... 17

Variables ... 19

About
This document describes how to communicate with the Remote Administration interface that is present in BFBC2 PC

servers. The protocol is bidirectional, and allows clients to send commands to the server as well as the server to send

events to clients.

The protocol is designed for machine-readability, not human-readability. It is the basis for all graphical remote

administration tools.

Low-level protocol

Packet format
int32

32-bit unsigned integer

1 byte bits 7..0 of value

 1 byte bits 15..8 of value

 1 byte bits 23..16 of value

 1 byte bits 31..24 of value

Word

int32 Size Number of bytes in word, excluding trailing null byte

char[] Content Word contents -- must not contain any null bytes

char Terminator Trailing null byte

Packet

int32 Sequence Bit 31: 0 = The command in this command/response pair originated on the server

 1 = The command in this command/response pair originated on the client

 Bit 30: 0 = Request, 1 = Response

Bits 29..0: Sequence number (this is used to match requests/responses in a full duplex

transmission)

int32 Size Total size of packet, in bytes

int32 NumWords Number of words following the packet header

Word[N] Words N words

A packet cannot be more than 16384 bytes in size.

Protocol behaviour
The client communicates with the server using a request/response protocol. Each request contains a sequence

number which grows monotonically, a flag which indicates whether the command originated on the client or the

server, and one word containing the command name. In addition to this, a command can have zero or more

arguments.

Every request must be acknowledged by a response. The response includes the same sequence number, and the

same origin flag. However, it has the response flag set.

Sequence numbers are unique within one server-client connection. Thus, the same sequence number can be used

when the server is communicating with different clients.

Responses must contain at least one word. The first word can be one of the following:

 OK - request completed successfully

 UnknownCommand - unknown command

 InvalidArguments - Arguments not appropriate for command

 <other> - command-specific error

 OK is the only response which signifies success.

 Subsequent arguments (if any) are command-specific.

The server is guaranteed to adhere to this protocol specification. If the client violates the protocol, the server may

close the connection without any prior notice.

Comments
The format of the Words portion of a packet is designed such that it shall be easy to split it into individual words in

both C++ and Python. Any numerical arguments are always transferred in string form (not in raw binary form).

The protocol is designed to be fully bidirectional.

Parameter formats

String
An 8bit ASCII string. Must not contain any characters with ASCII code 0.

Boolean
Two possible values:

 true

 false

HexString
A stream of hexadecimal digits. The stream must always contain an even number of digits. Allowed characters are:

0123456789ABCDEF

Password
A password is from 0 up to 16 characters in length, inclusive. The allowed characters are:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Filename
A filename is from 1 up to 240 characters in length, inclusive. The allowed characters are:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789._-

Clantag
A clan tag is from 0 to an unknown number of characters in length. At the time of writing, it is unclear which the

allowed characters are.

Player name
The “player name” (referred to as “Soldier name” in-game) is the persona name which the player chose when

logging in to EA Online. The exact specification of a player name (length, valid characters, etc.) is currently unclear.

GUID
The GUID is a unique identifier for a player. It is 35 characters long, consists of the prefix “EA_” immediately followed

by a 32-character HexString.

Team ID

An integer.

Team 0 is neutral. Depending on gamemode, there are up to 16 non-neutral teams, numbered 1..16.

Squad ID
An integer.

Squad 0 is “no squad”. Depending on gamemode, there are up to 32 squads numbered 1..32.

Note that squad IDs are local within each team; that is, to uniquely identify a squad you need to specify both a Team

ID and a Squad ID.

Player subset
Several commands – such as admin.listPlayers – take a player subset as argument.

A player subset is one of the following:

 all - all players on the server

 team <team number: Team ID> - all players in the specified team

 squad <team number: Team ID> <squad number: Squad ID> - all players in the specified team+squad

 player <player name: string> - one specific player

Timeout
Some commands, such as bans, take a timeout as argument.

A timeout is one of the following:

 perm - permanent

 rounds <number of rounds: integer> - number of rounds

 seconds <number of seconds: integer> - number of seconds

Id-type
Some commands, such as bans, take an id-type as argument

An id-type is one of the following:

 name - Soldier name

 ip - IP address

 guid - Player’s GUID

Player info block
The standard set of info for a group of players contains a lot of different fields. To reduce the risk of having to do

backwards-incompatible changes to the protocol, the player info block includes some formatting information.

 <number of parameters> - number of parameters for each player

 N x <parameter type: string> - the parameter types that will be sent below

 <number of players> - number of players following

 M x N x <parameter value> - all parameter values for player 0, then all parameter

 values for player 1, etc.

Current parameters:

 name string - player name

 guid GUID - player’s GUID

 teamId Team ID - player’s current team

 squadId Squad ID - player’s current squad

 kills integer - number of kills, as shown in the in-game scoreboard

 deaths integer - number of deaths, as shown in the in-game scoreboard

 score integer - score, as shown in the in-game scoreboard

Team scores
This describes the number of tickets, or kills, for each team in the current round.

 <number of entries: integer> - number of team scores that follow

 N x <score: integer> - score for all teams

 <target score: integer> - when any team reaches this score, the match ends

IpPortPair
A string on the following format:

 <IPv4 address>:<port number>

MapList
This describes the set of maps which the server rotates through. Format is as follows:

 <number of maps: integer> - number of maps that follow

 <number of words per map: integer> - number of words per map

 <map name: string> - name of map

 <gamemode name: string> - name of gamemode

 <number of rounds: integer> - number of rounds to play on map before switching

The reason for the <number of words per map> specification is future proofing; in the future, DICE might add extra

words per map after the first three. However, the first three words are very likely to remain the same.

Unlock mode
Specifies which set of unlocks should be available to players. Current values are available:

 all - all unlocks for player, including purchased DLCs

 common - all unlocks for player, excluding DLCs

 stats - unlocks for player according to his stats

 none - only the base set of weapons

Server events

Most commands require the client to be logged in. Before the client has logged in, only 'login.plainText',

'login.hashed', 'logout', 'version', 'listPlayers', 'serverInfo' and 'quit' commands are available.

Summary
Command Description

player.onAuthenticated Player with name <soldier name> has joined the server

player.onJoin Player with name <soldier name> has joined the server

player.onLeave with name <soldier name> has left the server

player.onSpawn Player with name <soldier name> has spawned in

player.onKill Player with name <killing soldier name> has killed <killed soldier name>

player.onChat Chat message has been sent to a group of people

player.onSquadChange Player might have changed squad

player.onTeamChange Player might have changed team

punkBuster.onMessage PunkBuster server has output a message

server.onMaxPlayerCountChange Effective max player count has changed

server.onLevelLoaded Level has loaded

server.onRoundOver Round has ended

server.onRoundOverPlayers Player stats at end-of-round

server.onRoundOverTeamScores Team stats at end-of-round

Player events
Request: player.onAuthenticated <soldier name: string>

Response: OK

Effect: Player with name <soldier name> has joined the server

Request: player.onJoin <soldier name: string> <id: GUID>

Response: OK

Effect: Player with name <soldier name> has joined the server

Request: player.onLeave <soldier name: string> <soldier info: player info block>

Response: OK

Effect: Player with name <soldier name> has left the server; his last set of stats were <soldier info>

Request: player.onSpawn <soldier name: string> <team: Team ID>

Response: OK

Effect: Player with name <soldier name> has spawned in, with team <team>

NOTE The <team> specifier is probably superfluous information and might get removed in the future

Request: player.onKill <killing soldier name: string> <killed soldier name: string> <weapon: string>

 <headshot: boolean>

Response: OK

Effect: Player with name <killing soldier name> has killed <killed soldier name>

 Suicide indication is unknown at this moment.

 If the server kills the player (through admin.killPlayer), the result is unknown.

Request: player.onChat <source soldier name: string> <text: string> <target players: player subset>

Response: OK

Effect: Player with name <source soldier name> (or the server, or the server admin) has sent chat

 message <text> to <target players>

Comment: If <source soldier name> is “Server”, then the message was sent from the server rather than from an

 actual player

Request: player.onSquadChange <soldier name: player name> <team: Team ID> <squad: Squad ID>

Response: OK

Effect: Player might have changed squad

Request: player.onTeamChange <soldier name: player name> <team: Team ID> <squad: Squad ID>

Response: OK

Effect: Player might have changed team

Misc
Request: punkBuster.onMessage <message: string>

Response: OK

Effect: PunkBuster server has output a message

Comment: The entire message is sent as a raw string. It may contain newlines and whatnot.

Request: server.onMaxPlayerCountChange <count: int>

Response: OK

Effect: The game server has changed the effective max player count

Level/Round
Request: server.onLevelLoaded <level name: string> <gamemode: string> <roundsPlayed: int>

 <roundsTotal: int>

Response: OK

Effect: Level has completed loading, and will start in a bit

Request: server.onRoundOver <winning team: Team ID>

Response: OK

Effect: The round has just ended, and <winning team> won

Request: server.onRoundOverPlayers <end-of-round soldier info: player info block>

Response: OK

Effect: The round has just ended, and <end-of-round soldier info> is the final detailed player stats

Request: server.onRoundOverTeamScores <end-of-round scores: team scores>

Response: OK

Effect: The round has just ended, and <end-of-round scores> is the final ticket/kill/life count for each team

Client commands
Most commands require the client to be logged in. Before the client has logged in, only 'login.plainText',

'login.hashed', 'logout', 'version', 'serverInfo', 'listPlayers' and 'quit' commands are available.

Summary
Command Description

login.plainText <password> Attempt to login to game server with password

login.hashed Retrieves the salt, used in the hashed password login process

login.hashed <passwordHard> Sends a hashed password to the server, in an attempt to log in

serverinfo Query for brief server info

admin.help Report which commands the server knows about

logout Logout from game server

quit Disconnect from server

version Reports game server type, and build ID

listPlayers <players> Return list of a group of players on the server, without GUIDs

admin.eventsEnabled <enabled> Set whether or not the server will send events to the current connection

admin.password [password] Set the admin password for the server

admin.effectiveMaxPlayers Query the effective maximum number of players

admin.say <message, players> Send a chat message to a group of players

admin.yell <message, duration, players> Show a large on-screen message for a group of players

admin.kickPlayer <soldier name, reason> Kick player <soldier name> from server

admin.listPlayers <players> Return list of a group of players on the server

admin.movePlayer <name, teamID, squadID, forceKill> Move a player to another team and squad

admin.killPlayer <name> Kill a player without scoring effects

punkBuster.isActive Returns whether or not PunkBuster currently is active

punkBuster.activate Attempt to activate PunkBuster if it is not currently running

punkBuster.pb_sv_command <command> Send a raw PunkBuster command to the PunkBuster server

banList.load Load list of banned players/IPs/GUIDs from file

banList.save Save list of banned players/IPs/GUIDs to file

banList.add <id-type, id, timeout, reason> Add player/IP/GUID to ban list for a certain amount of time

banList.remove <id-type, id> Remove player/IP/GUID from ban list

banList.clear Clears ban list

banList.list [startIndex] Return part of the list of banned players/IPs/GUIDs

reservedSlotsList.load Load list of reserved soldier names from file

reservedSlotsList.save Save list of reserved soldier names to file

reservedSlotsList.add <name> Add <name> to list of players who can use the reserved slots

reservedSlotsList.remove <name> Remove <name> from list of players who can use the reserved slots

reservedSlotsList.clear Clear reserved slots list

reservedSlotsList.list Retrieve list of players who can utilize the reserved slots

reservedSlotsList.aggressiveJoin [enabled] Set if the server should kick to make room for VIP

mapList.load Load list of maps from disk

mapList.save Save list of maps to disk

mapList.add <map> <gamemode> <rounds> <offset> Insert map at specified offset in map list

mapList.remove <index> Remove specified map from map list

mapList.clear Clear map list

mapList.list [startIndex] Returns part of the map list

mapList.setNextMapIndex <index> Set which map to switch to at end of current round

mapList.getMapIndices Get indices for current & next map

mapList.getRounds Get current round and number of rounds

mapList.endRound <teamID> End current round, declaring the specified team as winners

mapList.runNextRound Abort current round and move on to next

mapList.restartRound Restart current round

mapList.availableMaps Currently broken!

vars.ranked Change the server between ranked/unranked mode

vars.serverName [name] Set the server name

vars.gamePassword [password] Set the game password for the server

vars.autoBalance [enabled] Set if the server should autobalance

vars.roundStartPlayerCount [numPlayers] Set minimum numbers of players to go from warm-up to pre-round/in-

round

vars.roundRestartPlayerCount [numPlayers] Set minimum numbers of players to go from in-round to warm-up

vars.roundLockdownCountdown [time] Set the duration of pre-round

vars.serverMessage [message] Set the server welcome message

vars.friendlyFire [enabled] Set if the server should allow team damage

vars.maxPlayers [nr of players] Set desired maximum number of players

vars.serverDescription [description] Set server description

vars.killCam [enabled] Set if killcam is enabled

vars.miniMap [enabled] Set if minimap is enabled

vars.hud [enabled] Set if HUD is enabled

vars.crossHair [enabled] Set if crosshair for all weapons is enabled

vars.3dSpotting [enabled] Set if spotted targets are visible in the 3d-world

vars.miniMapSpotting [enabled] Set if spotted targets are visible on the minimap

vars.nameTag [enabled] Set if nametags should be displayed

vars.3pCam [enabled] Set if allowing to toggle to third person vehicle cameras

vars.regenerateHealth [enabled] Set if health regeneration should be active

vars.teamKillCountForKick [count] Set number of teamkills allowed during a round

vars.teamKillValueForKick [count] Set max kill-value allowed for a player before he/she is kicked

vars.teamKillValueIncrease [count] Set kill-value increase for a teamkill

vars.teamKillValueDecreasePerSecond [count] Set kill-value decrease per second

vars.teamKillKickForBan [count] Set number of team-kill kicks that will lead to permaban

vars.idleTimeout [time] Set idle timeout

vars.idleBanRounds [enabled] Set how many rounds idle timeout should ban (if at all)

vars.vehicleSpawnAllowed [enabled] Set whether vehicles should spawn in-game

vars.vehicleSpawnDelay [modifier: percent] Set vehicle spawn delay scale factor

vars.soldierHealth [modifier: percent] Set soldier max health scale factor

vars.playerRespawnTime [modifier: percent] Set player respawn time scale factor

vars.playerManDownTime [modifier: percent] Set player man-down time scale factor

vars.bulletDamage [modifier: percent] Set bullet damage scale factor

vars.gameModeCounter [modifier: integer] Set scale factor for number of tickets to end round

vars.onlySquadLeaderSpawn [enabled] Set if players can only spawn on their squad leader

vars.unlockMode [mode] Set weapons & gadgets to be available on an unranked server

vars.premiumStatus [enabled] Set if the server should be exclusive to Premium Players

vars.bannerUrl Not used

vars.roundsPerMap Not used

vars.gunMasterWeaponsPreset Select weapons preset for gun master game mode

Misc
Request: login.plainText <password: string>

Response: OK - Login successful, you are now logged in regardless of prior status

Response: InvalidPassword - Login unsuccessful, logged-in status unchanged

Response: PasswordNotSet - Login unsuccessful, logged-in status unchanged

Response: InvalidArguments

Effect: Attempt to login to game server with password <password>

Comments: If you are connecting to the admin interface over the internet, then use login.hashed instead to avoid

having evildoers sniff the admin password

Request: login.hashed

Response: OK <salt: HexString> - Retrieved salt for the current connection

Response: PasswordNotSet - No password set for server, login impossible

Response: InvalidArguments

Effect: Retrieves the salt, used in the hashed password login process

Comments: This is step 1 in the 2-step hashed password process. When using this people cannot sniff your admin

password.

Request: login.hashed <passwordHash: HexString>

Response: OK - Login successful, you are now logged in regardless of prior status

Response: PasswordNotSet - No password set for server, login impossible

Response: InvalidPasswordHash - Login unsuccessful, logged-in status unchanged

Response: InvalidArguments

Effect: Sends a hashed password to the server, in an attempt to log in

Comments: This is step 2 in the 2-step hashed password process. When using this people cannot sniff your admin

password.

Request: logout

Response: OK - You are now logged out regardless of prior status

Response: InvalidArguments

Effect: Logout from game server

Request: quit

Response: OK

Response: InvalidArguments

Effect: Disconnect from server

Request: version

Response: OK BF3 <version>

Response: InvalidArguments

Effect: Reports game server type, and build ID

Comments: Game server type and build ID uniquely identify the server, and the protocol it is running.

Request: listPlayers <players: player subset>

Response: OK <player info>

Response: InvalidArguments

Effect: Return list of all players on the server, but with zeroed out GUIDs

Request: admin.eventsEnabled [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set whether or not the server will send events to the current connection

Request: admin.password [password: password]

Response: OK - for set operation

Response: OK <password> - for get operation

Response: InvalidArguments

Response: InvalidPassword - password does not conform to password format rules

Effect: Set the admin password for the server, use it with an empty string("") to reset

Request: admin.help

Response: OK <all commands available on server, as separate words>

Response: InvalidArguments

Effect: Report which commands the server knows about

PunkBuster
Request: punkBuster.isActive

Response: OK <active: Boolean>

Effect: Query whether the PunkBuster server module is active

Request: punkBuster.activate

Response: OK

Effect: Attempt to activate PunkBuster server module if it currently is inactive

Request: punkBuster.pb_sv_command <command: string>

Response: OK - Command sent to PunkBuster server module

Response: InvalidArguments

Response: InvalidPbServerCommand - Command does not begin with “pb_sv_”

Effect: Send a raw PunkBuster command to the PunkBuster server

Comment: The entire command is to be sent as a single string. Don’t split it into multiple words.

Query
Request: serverInfo

Response: OK <serverName: string> <current playercount: integer> <effective max playercount: integer>

 <current gamemode: string> <current map: string>

 <roundsPlayed: integer> <roundsTotal: string> <scores: team scores> <onlineState: online state>

 <ranked: boolean> <punkBuster: boolean> <hasGamePassword: boolean>

 <serverUpTime: seconds> <roundTime: seconds> <gameIpAndPort: IpPortPair>

 <punkBusterVersion: string> <joinQueueEnabled: boolean>

 <region: string> <closestPingSite: string> <country: string> <matchMakingEnabled: boolean>

Response: InvalidArguments

Effect: Query for brief server info.

Comments: This command can be performed without being logged in.

 Some of the return values will be empty or zero when the server isn’t fully up and running or

 between levels.

 Some return values are not yet implemented, and will therefore be zero.

Request: admin.effectiveMaxPlayers

Response: OK <current max players: int>

Response: InvalidArguments

Effect: Query the effective maximum number of players

Communication
Request: admin.say <message: string> <players: player subset>

Response: OK

Response: InvalidArguments

Response: InvalidTeam

Response: InvalidSquad

Response: PlayerNotFound

Response: TooLongMessage

Effect: Send a chat message to players. The message must be less than 128 characters long.

Request: admin.yell <message: string> [duration: seconds] [players: player subset]

Response: OK

Response: InvalidArguments

Response: PlayerNotFound

Response: MessageIsTooLong

Effect: Show an obnoxious message on players’ screens for the specified duration.

 If duration is left out, a default of 10 seconds is assumed.

 If players are left out, the message will go to all players.

 The message must be less than 256 characters long.

Manage players
Request: admin.kickPlayer <soldier name: player name> [reason: string]

Response: OK - Player did exist, and got kicked

Response: InvalidArguments

Response: PlayerNotFound - Player name doesn't exist on server

Effect: Kick player <soldier name> from server

Comments: Reason text is optional. Default reason is “Kicked by administrator”.

Request: admin.listPlayers <players: player subset>

Response: OK <player info>

Response: InvalidArguments

Effect: Return list of all players on the server; including guids

Request: admin.movePlayer <name: player name> <teamId: Team ID> <squadId: Squad ID> <forceKill: boolean>

Response: OK

Response: InvalidArguments

Response: InvalidTeamId

Response: InvalidSquadId

Response: InvalidPlayerName

Response: InvalidForceKill

Response: PlayerNotDead - Player is alive and forceKill is false

Response: SetTeamFailed

Response: SetSquadFailed

Effect: Move a player to another team and/or squad

Comment: Only works if player is dead. This command will kill player if forceKill is true

Request: admin.killPlayer <name: player name>

Response: OK

Response: InvalidArguments

Response: InvalidPlayerName

Response: SoldierNotAlive

Effect: Kill a player without any stats effect

Reserved Slots
Request: reservedSlotsList.load

Response: OK

Response: PlayerAlreadyInList

Response: InvalidArguments

Response: Full

Response: InvalidName

Response: AccessError - Could not read from file

Response: IncompleteRead - Could not read the full file

Effect: Load list of VIP players from file

Comment: 1 line for each entry with player name

Request: reservedSlotsList.save

Response: OK

Response: InvalidArguments

Response: AccessError - Could not save to file

Effect: Save list of VIP player names to file

Comment: 1 line for each player name

 Every line break has windows “\r\n” characters.

Request: reservedSlotsList.add <id: string>

Response: OK

Response: InvalidArguments

Response: InvalidName

Response: PlayerAlreadyInList

Response: Full

Effect: Add player to VIP list

Request: reservedSlotsList.remove <id-type: id-type> <id: string>

Response: OK

Response: InvalidArguments

Response: PlayerNotInList

Effect: Remove a player from the VIP list

Request: reservedSlotsList.clear

Response: OK

Response: InvalidArguments

Effect: Clears VIP list

Request: reservedSlotsList.list [startOffset: integer]

Response: OK <player entries>

Response: InvalidArguments

Effect: Return a section of the list of VIP players’ names.

Comment: 1 line for each player

 If no startOffset is supplied, it is assumed to be 0.

 At most 100 entries will be returned by the command.

 To retrieve the full list, perform several reservedSlots.list calls with increasing offset until the

 server returns 0 entries.

Request: reservedSlotsList.aggressiveJoin

Response: OK

Response: InvalidArguments

Effect: If set to true, a non-VIP player will be kicked to give room when a VIP enters the queue.

Banning
Request: banList.load

Response: OK

Response: InvalidArguments

Response: InvalidIdType

Response: InvalidBanType

Response: InvalidTimeStamp - A time stamp could not be read

Response: IncompleteBan - Incomplete ban entry at end of file

Response: AccessError - Could not read from file

Effect: Load list of banned players/IPs/GUIDs from file

Comment: 6 lines (Id-type, id, ban-type, seconds left, rounds left, and reason) are retrieved for every ban

 in the list.

 Entries read before getting InvalidIdType, InvalidBanType, InvalidTimeStamp and IncompleteBan

 is still loaded.

Request: banList.save

Response: OK

Response: InvalidArguments

Response: AccessError - Could not save to file

Effect: Save list of banned players/IPs/GUIDs to file

Comment: 6 lines (Id-type, id, ban-type, seconds left, rounds left, and reason) are stored for every ban in the list.

 Every line break has windows “\r\n” characters.

Request: banList.add <id-type: id-type> <id: string> <timeout: timeout> [reason: string]

Response: OK

Response: InvalidArguments

Response: BanListFull

Effect: Add player to ban list for a certain amount of time

Comments: Adding a new name/IP/GUID ban will replace any previous ban for that name/IP/GUID

 timeout can take three forms:

 perm - permanent [default]

 rounds <integer> - until the given number of rounds has passed

 seconds <integer> - number of seconds until ban expires

 Id-type can be any of these

 name – A soldier name

 ip – An IP address

 guid – A player guid

 Id could be either a soldier name, ip address or guid depending on id-type.

 Reason is optional and defaults to “Banned by admin”; max length 80 chars.

Request: banList.remove <id-type: id-type> <id: string>

Response: OK

Response: InvalidArguments

Response: NotFound - Id not found in banlist; banlist unchanged

Effect: Remove name/ip/guid from banlist

Request: banList.clear

Response: OK

Response: InvalidArguments

Effect: Clears ban list

Request: banList.list [startOffset: integer]

Response: OK <player ban entries>

Response: InvalidArguments

Effect: Return a section of the list of banned players’ name/IPs/GUIDs.

Comment: 6 words (Id-type, id, ban-type, seconds left, rounds left, and reason) are received

 for every ban in the list.

 If no startOffset is supplied, it is assumed to be 0.

 At most 100 entries will be returned by the command.

 To retrieve the full list, perform several banList.list calls with increasing offset until the

 server returns 0 entries.

 (There is an unsolved synchronization problem hidden there: if a ban expires during this process,

 then one other entry will be skipped during retrieval. There is no known workaround for this.)

MapList

Request: mapList.load

Response: OK

Response: InvalidArguments

Response: AccessError – file I/O error

Response: InvalidMap – incorrect map name

Response: InvalidGameModeOnMap – gamemode does not exist for that map

Response: InvalidRoundsPerMap – number of rounds must be 1 or greater

Response: Full – Map list maximum size has been reached

Effect: Clears the map list and loads it from disk again.

Comments: If loading fails, the map list will be in an undefined state.

Request: mapList.save

Response: OK

Response: InvalidArguments

Response: AccessError – file I/O error

Effect: Saves the map list to disk.

Request: mapList.add <map: string> <gamemode: string> <rounds: integer>

 [index: integer]

Response: OK

Response: InvalidArguments

Response: InvalidMap – incorrect map name

Response: InvalidGameModeOnMap – gamemode does not exist for that map

Response: InvalidRoundsPerMap – number of rounds must be 1 or greater

Response: Full – Map list maximum size has been reached

Response: InvalidMapIndex – Index value is out of range

Effect: Adds the map <map>, with gamemode <gamemode>, for <rounds> rounds, to the

 maplist. If <index> is not specified, it is appended to the end; otherwise, it is inserted

 before the map which is currently at position <index>.

Request: mapList.remove <index: integer>

Response: OK

Response: InvalidArguments

Response: InvalidMapIndex – Index value is out of range

Effect: Removes the map at offset <index> from the maplist.

Request: mapList.clear

Response: OK

Response: InvalidArguments

Effect: Clears the map list.

Request: mapList.list [startIndex]

Response: OK < map list: MapList>

Response: InvalidArguments

Effect: Returns a section of the map list.

 If no startOffset is supplied, it is assumed to be 0.

 At most 100 entries will be returned by the command.

 To retrieve the full list, perform several mapList.list calls with increasing offset until the

 server returns 0 entries.

 (There is an unsolved synchronization problem hidden there: if the map list is edited by another

 RCON client during this process, then entries may be missed during retrieval. There is no

 known workaround for this.)

Request: mapList.setNextMapIndex <index: integer>

Response: OK

Response: InvalidArguments

Response: InvalidMapIndex – Index value is out of range

Effect: Specifies which map to switch to once the current round completes. If there are rounds remaining

 on the current map, those rounds will be skipped.

Request: mapList.getMapIndices

Response: OK <current map index: integer> <next map index: integer>

Response: InvalidArguments

Effect: Returns the index of the map that is currently being played, and the index of the next map to run.

Request: mapList.getRounds

Response: OK <current round: integer> <total rounds to play on this map: integer>

Response: InvalidArguments

Effect: Returns the (1-based) current round number, and total number of rounds before switching map.

Request: mapList.runNextRound

Response: OK

Response: InvalidArguments

Effect: Switches immediately to the next round, without going through the end-of-round sequence.

Request: mapList.restartRound

Response: OK

Response: InvalidArguments

Effect: Restarts the current round, without going through the end-of-round sequence.

Request: mapList.endRound <winner: Team ID>

Response: OK

Response: InvalidArguments

Effect: End the current round, declaring <winner> as the winning team

Request: mapList.availableMaps <…>

Response: OK

Effect: Currently broken!

Variables

Request: vars.ranked [ranked: boolean]

Response: OK - for set operation

Response: OK <ranked: boolean> - for get operation

Response: InvalidArguments

Effect: Change the server between ranked/unranked mode

Comments: This command can only be used during startup. It can only be used to switch the server from

 ranked to unranked mode; the server can never switch back to ranked mode again.

Request: vars.serverName [name: string]

Response: OK - for set operation

Response: OK <name> - for get operation

Response: InvalidArguments

Response: TooLongName - for set operation

Effect: Set server name

Request: vars.gamePassword [password: password]

Response: OK - for set operation

Response: OK <password> - for get operation

Response: InvalidArguments

Response: InvalidPassword - password does not conform to password format rules

Response: InvalidConfig - password can’t be set if ranked is enabled

Effect: Set the game password for the server, use it with an empty string("") to reset

Request: vars.autoBalance [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if the server should autobalance

Request: vars.friendlyFire [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Response: LevelNotLoaded - for set operation

Effect: Set if the server should allow team damage

Delay: Works after round restart

Comment: Not available during level load.

Request: vars.maxPlayers [nr of players: integer]

Response: OK - for set operation

Response: OK <nr of players: integer> - for get operation

Response: InvalidArguments

Response: InvalidNrOfPlayers - Player limit must be in the range 8..32

Effect: Set desired maximum number of players

Comment: The effective maximum number of players is also effected by the server provider, and the

 game engine. If the desired maximum number of players is set to something that is accepted by

 the server, the effective maximum number of players will usually change within a second.

 If the value is currently not accepted, then the server will continue to check every 10 seconds and

 change the effective count whenever the game engine allows it.

Request: vars.serverDescription [description: string]

Response: OK - for set operation

Response: OK <description: string> - for get operation

Response: InvalidArguments

Effect: Sets the server description. This string is displayed on the server’s detail page on Battlelog.

 This string must be less than 256 characters in length.

Request: vars.serverMessage [description: string]

Response: OK - for set operation

Response: OK <description: string> - for get operation

Response: InvalidArguments

Effect: Sets the server welcome message. This message will be displayed via an admin.yell to each player

 the first time that player deploys in on the server. The message is displayed for 5 seconds.

 This string must be less than 256 characters in length.

Request: vars.killCam [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if killcam is enabled

Delay: Works after map switch

Request: vars.miniMap [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if minimap is enabled

Delay: Works after map switch

Request: vars.hud [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if players hud is available

Delay: Works after round restart

Request: vars.crossHair [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if crosshair for all weapons is enabled

Delay: Works after map switch

Request: vars.3dSpotting [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if spotted targets are visible in the 3d-world

Delay: Works after map switch

Request: vars.miniMapSpotting [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if spotted targets are visible on the minimap

Delay: Works after map switch

Request: vars.nameTag [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if nametags should be displayed

Delay: Works after map switch

Request: vars.3pCam [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if players should be allowed to switch to third-person vehicle cameras

Delay: Unknown

Request: vars.regenerateHealth [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if players health regeneration is active

Delay: Instantaneous

Request: vars.teamKillCountForKick [count: integer]

Response: OK - for set operation

Response: OK <count: integer> - for get operation

Response: InvalidArguments

Effect: Set number of teamkills allowed during one round, before the game kicks the player in question

 Set to 0 to disable kill counting

Delay: Instantaneous

Request: vars.teamKillValueForKick [count: integer]

Response: OK - for set operation

Response: OK <count: integer> - for get operation

Response: InvalidArguments

Effect: Set the highest kill-value allowed before a player is kicked for teamkilling

 Set to 0 to disable kill value mechanism

Delay: Instantaneous

Request: vars.teamKillValueIncrease [count: integer]

Response: OK - for set operation

Response: OK <count: integer> - for get operation

Response: InvalidArguments

Effect: Set the value of a teamkill (adds to the player’s current kill-value)

Delay: Instantaneous

Request: vars.teamKillValueDecreasePerSecond [count: integer]

Response: OK - for set operation

Response: OK <count: integer> - for get operation

Response: InvalidArguments

Effect: Set how much every player’s kill-value should decrease per second

Delay: Instantaneous

Request: vars.teamKillKickForBan [count: integer]

Response: OK - for set operation

Response: OK <count: integer> - for get operation

Response: InvalidArguments

Effect: Set how many teamkill-kicks will lead to permaban

 Set to 0 to disable feature

Delay: Instantaneous

Request: vars.idleTimeout [time: seconds]

Response: OK - for set operation

Response: OK <time: seconds> - for get operation

Response: InvalidArguments

Effect: Set how many seconds a player can be idle before he/she is kicked from server

 Set to 0 to disable idle kick

Delay: Instantaneous

Request: vars.idleBanRounds [number of rounds: integer]

Response: OK - for set operation

Response: OK <rounds: integer> - for get operation

Response: InvalidArguments

Effect: Set how many rounds an idle-kick person should be banned

 Set to 0 to disable ban mechanism

Delay: Instantaneous

Request: vars.roundStartPlayerCount [nr of players: integer]

Response: OK [nr of players: integer] - for set operation

Response: OK < nr of players: integer > - for get operation

Response: InvalidArguments

Effect: Set the minimum number of players required to begin a round

Delay: Takes effect next round

Note: If the server is ranked, and the value gets clamped during a set operation,

 then the clamped value is returned as part of the response

Request: vars.roundRestartPlayerCount [nr of players: integer]

Response: OK [nr of players: integer] - for set operation

Response: OK < nr of players: integer > - for get operation

Response: InvalidArguments

Effect: Set the minimum number of players for the round to restart in pre-round

Delay: Takes effect next round

Note: If the server is ranked, and the value gets clamped during a set operation,

 then the clamped value is returned as part of the response

Request: vars. roundLockdownCountdown [time: seconds]

Response: OK [time: seconds] - for set operation

Response: OK < time: seconds > - for get operation

Response: InvalidArguments

Effect: Set the duration of pre-round

Delay: Takes effect next round

Note: Allowed durations are between 15 and 30 seconds for ranked servers, and between 10 and

 900 seconds for unranked servers. If the value gets clamped during a set operation,

 then the clamped value is returned as part of the response

Request: vars.vehicleSpawnAllowed [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set whether vehicles should spawn in-game

Delay: Instantaneous

Request: vars.vehicleSpawnDelay [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set vehicle spawn delay scale factor, in percent

Delay: Instantaneous

Request: vars.soldierHealth [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set soldier max health scale factor, in percent

Delay: Instantaneous

Request: vars.playerRespawnTime [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set player respawn time scale factor, in percent

Delay: Instantaneous

Request: vars.playerManDownTime [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set player man-down time scale factor, in percent

Delay: Instantaneous

Request: vars.bulletDamage [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set bullet damage scale factor, in percent

Delay: Instantaneous

Request: vars.gameModeCounter [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set scale factor for number of tickets to end round, in percent

Delay: Instantaneous

Request: vars.onlySquadLeaderSpawn [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if players can only spawn on their squad leader

Delay: Instantaneous

Request: vars.unlockMode [mode: Unlock mode]

Response: OK - for set operation

Response: OK <mode: Unlock mode> - for get operation

Response: InvalidArguments

Effect: Set which group of weapons/unlock should be available to players on an unranked server

Delay: Instantaneous, but if changed while players are on the server, strange things will happen

Request: vars.premiumStatus [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if server should be exclusive to Premium players

Delay: Instantaneous

Request: vars.gunMasterWeaponsPreset [modifier: integer]

Response: OK - for set operation

Response: OK < modifier: integer > - for get operation

Response: InvalidArguments

Effect: Set what weapons preset to use when playing the gun master game mode, 0=normal, 1=?...

Delay: Works after map switch

